Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
The Korean Journal of Parasitology ; : 537-544, 2013.
Article in English | WPRIM | ID: wpr-155359

ABSTRACT

The present study was performed to observe histopathological changes in tissues of Bithynia siamensis goniomphalos (Gastropoda, Bithyniidae) incubated in crude extract solutions of camellia (Camellia oleifera) seed and mangosteen (Garcinia mangostana) pericarp, and furthermore to estimate the molluscicidal effects of 2 plant substances. Substantial numbers of bithyniid snails were incubated in various concentrations of 2 plant solution for 24 hr. As the positive control, snails incubated in various concentrations of niclosamide, a chemical molluscicide, were used. The histopathological findings were observed in sectioned snail specimens of each experimental and control groups. The results showed that both camellia and mangosteen extracts had molluscicidal effects at 24 hr with 50% lethal concentration (LC50) at concentrations of 0.003 and 0.002 g/ml, respectively, while niclosamide had LC50 at concentrations 0.599 ppm. B. siamensis goniomphalos snail tissues (foot, gill, and digestive system) showed disruption of columnar muscle fibers of the foot, reduction of the length and number of gill cilia, numerous mucous vacuoles, and irregularly shaped of epithelial cells. Irregular apical and calciferous cells, dilatation of the digestive gland tubule, and large hemolymphatic spaces, and irregular apical surfaces, detachment of cilia, and enlargement of lysosomal vacuoles of epidermis were also shown in all groups. By the present study, it is confirmed that 2 plants, camellia and mangosteen, are keeping some substance having molluscicidal effects, and histopathological findings obtained in this study will provide some clues in further studies on their action mechanisms to use them as natural molluscicides.


Subject(s)
Animals , Camellia/chemistry , Disease Vectors , Garcinia mangostana/chemistry , Gastropoda/drug effects , Host-Parasite Interactions , Plant Extracts/chemistry , Seeds/chemistry
2.
The Korean Journal of Parasitology ; : 695-701, 2013.
Article in English | WPRIM | ID: wpr-197170

ABSTRACT

Opisthorchis viverrini infection causes inflammation and liver injury leading to periductal fibrosis. Little is known about the pathological alterations in bile canaliculi in opisthorchiasis. This study aimed to investigate bile canalicular alterations in O. viverrini-infected hamsters and to examine the chemopreventive effects of curcumin on such changes. Hamsters were infected with O. viverrini and one group of animals was fed with 1% dietary curcumin supplement. Animals were examined during the acute infection phase, days 21 and 30 post-infection (PI) and chronic infection phase (day 90 PI). Scanning electron microscopy revealed that in the infected group fed with a normal diet, bile canaliculi became slightly tortuous by 30 day PI and more tortuous at day 90 PI. Transmission electron microscopy showed a reduction in microvilli density of canaliculi starting at day 30 PI, with a marked loss of microvilli at day 90 PI. These ultrastructral changes were slightly seen at day 21 PI, which was similar to that found in infected animals fed with 1% curcumin-supplemented diet. Notably, curcumin treatment prevented the reduction of microvilli density, reduced the dilation of bile canaliculi, and decreased the tortuosity of the bile canaliculi relative to non-infected animals on a normal diet at days 30 and 90 PI. These results suggest that curcumin reduces alteration of bile canaliculi and may be a promising agent to prevent the onset of bile duct abnormalities induced by O. viverrini infection.


Subject(s)
Animals , Cricetinae , Male , Anthelmintics/administration & dosage , Bile Canaliculi/pathology , Chemoprevention/methods , Curcumin/administration & dosage , Disease Models, Animal , Electrons , Liver/pathology , Mesocricetus , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Opisthorchiasis/parasitology , Opisthorchis/growth & development
3.
The Korean Journal of Parasitology ; : 703-710, 2013.
Article in English | WPRIM | ID: wpr-197169

ABSTRACT

To increase public health awareness for prevention of opisthorchiasis caused by eating raw freshwater fish, the distribution and abundance of Opisthorchis viverrini metacercariae (OV MC) was investigated in freshwater fish obtained from 20 provinces in northeastern Thailand between April 2011 and February 2012. A cross-sectional survey was conducted on 12,890 fish consisting of 13 species randomly caught from 26 rivers, 10 dams, and 38 ponds/lakes. Fish, were collected in each of the rainy and winter seasons from each province. Fish were identified, counted, weighed, and digested using pepsin-HCl. Samples were examined for OV MC by a sedimentation method, and metacercariae were identified under a stereomicroscope. OV MC were found in 6 species of fish; i.e., Cyclocheilichthys armatus, Puntius orphoides, Hampala dispar, Henicorhynchus siamensis, Osteochilus hasselti, and Puntioplites proctozysron from localities in 13 provinces. Among the sites where OV MC-infected fish were found, 70.0% were dams, 23.7% were ponds/lakes, and 7.7% were rivers. The mean intensity of OV MC ranged from 0.01 to 6.5 cysts per fish (or 1.3-287.5 cysts per kg of fish). A high mean intensity of OV MC per fish (>3 cysts) was found in 5 provinces: Amnat Charoen (6.5 cysts), Nakhon Phanom (4.3), Mukdahan (4.1), Khon Kaen, (3.5) and Si Sa Ket (3.4). In conclusion, OV MC are prevalent in natural cyprinid fish, with the infection rate varying according to fish species and habitats.


Subject(s)
Animals , Cross-Sectional Studies , Cyprinidae/parasitology , Fish Diseases/epidemiology , Metacercariae/isolation & purification , Microscopy , Opisthorchiasis/epidemiology , Opisthorchis/isolation & purification , Parasitology/methods , Prevalence , Thailand
4.
The Korean Journal of Parasitology ; : 711-717, 2013.
Article in English | WPRIM | ID: wpr-197168

ABSTRACT

Opisthorchis viverrini (O. viverrini) is a well-known causative agent of cholangiocarcinoma (CCA) in humans. CCA is very resistant to chemotherapy and is frequently fatal. To understand the pathogenesis of CCA in humans, a rodent model was developed. However, the development of CCA in rodents is time-consuming and the xenograft-transplantation model of human CCA in immunodeficient mice is costly. Therefore, the establishment of an in vivo screening model for O. viverrini-associated CCA treatment was of interest. We developed a hamster CCA cell line, Ham-1, derived from the CCA tissue of O. viverrini-infected and N-nitrosodimethylamine-treated Syrian golden hamsters. Ham-1 has been maintained in Dulbecco's Modified Essential Medium supplemented with 10% fetal bovine serum for more than 30 subcultures. These cells are mostly diploid (2n=44) with some being polyploid. Tumorigenic properties of Ham-1 were demonstrated by allograft transplantation in hamsters. The transplanted tissues were highly proliferative and exhibited a glandular-like structure retaining a bile duct marker, cytokeratin 19. The usefulness of this for in vivo model was demonstrated by berberine treatment, a traditional medicine that is active against various cancers. Growth inhibitory effects of berberine, mainly by an induction of G1 cell cycle arrest, were observed in vitro and in vivo. In summary, we developed the allo-transplantable hamster CCA cell line, which can be used for chemotherapeutic drug testing in vitro and in vivo.


Subject(s)
Animals , Cricetinae , Male , Allografts , Antineoplastic Agents/isolation & purification , Berberine/therapeutic use , Cell Culture Techniques , Cell Line, Tumor , Cell Transplantation/methods , Cholangiocarcinoma/drug therapy , Culture Media/chemistry , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Mesocricetus
SELECTION OF CITATIONS
SEARCH DETAIL